Molecular biophysics of Orai store-operated Ca2+ channels.
نویسندگان
چکیده
Upon endoplasmic reticulum Ca(2+) store depletion, Orai channels in the plasma membrane are activated directly by endoplasmic reticulum-resident STIM proteins to generate the Ca(2+)-selective, Ca(2+) release-activated Ca(2+) (CRAC) current. After the molecular identification of Orai, a plethora of functional and biochemical studies sought to compare Orai homologs, determine their stoichiometry, identify structural domains responsible for the biophysical fingerprint of the CRAC current, identify the physiological functions, and investigate Orai homologs as potential therapeutic targets. Subsequently, the solved crystal structure of Drosophila Orai (dOrai) substantiated many findings from structure-function studies, but also revealed an unexpected hexameric structure. In this review, we explore Orai channels as elucidated by functional and biochemical studies, analyze the dOrai crystal structure and its implications for Orai channel function, and present newly available information from molecular dynamics simulations that shed light on Orai channel gating and permeation.
منابع مشابه
Regulation of store-operated calcium entry during cell division.
Store-operate Ca2+ channels gate Ca2+ entry into the cytoplasm in response to the depletion of Ca2+ from endoplasmic reticulum Ca2+ stores. The major molecular components of store-operated Ca2+ entry are STIM (stromal-interacting molecule) 1 (and in some instances STIM2) that serves as the endoplasmic reticulum Ca2+ sensor, and Orai (Orai1, Orai2 and Orai3) which function as pore-forming subuni...
متن کاملAuthentic CRAC channel activity requires STIM1 and the conserved portion of the Orai N terminus
Calcium (Ca2+) is an essential second messenger required for diverse signaling processes in immune cells. Ca2+ release-activated Ca2+ (CRAC) channels represent one main Ca2+ entry pathway into the cell. They are fully reconstituted via two proteins, the stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, and the Ca2+ ion channel Orai in the plasma membrane. After...
متن کاملIn this issue of Channels
Let me first take the opportunity to thank all the authors for their excellent contributions to this special issue dedicated to the relatively young field of “STIM/Orai” research. I would also like to express my sincere thanks to the Channels Editor-in-Chief, Gerald Zamponi, who approached me more than a year ago with this project and the extraordinary dedicated Channels staff, in particular, H...
متن کاملBiochemical and functional characterization of Orai proteins.
Stimulation of immune cells triggers Ca2+ entry through store-operated Ca2+ release-activated Ca2+ channels, promoting nuclear translocation of the transcription factor NFAT. Through genome-wide RNA interference screens in Drosophila, we and others identified olf186-F (Drosophila Orai, dOrai) and dStim as critical components of store-operated Ca2+ entry and showed that dOrai and its human homol...
متن کاملOrai1 and Orai3 in Combination with Stim1 Mediate the Majority of Store-operated Calcium Entry in Astrocytes
Astrocytes are non-excitable cells in the brain and their activity largely depends on the intracellular calcium (Ca2+) level. Therefore, maintaining the intracellular Ca2+ homeostasis is critical for proper functioning of astrocytes. One of the key regulatory mechanisms of Ca2+ homeostasis in astrocytes is the store-operated Ca2+ entry (SOCE). This process is mediated by a combination of the Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2015